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Resonance in Cylindrical—Rectangular and
Wraparound Microstrip Structures

SAMI M. ALI, SENIOR MEMBER, IEEE, TAREK M. HABASHY, MEMBER, IEEE, JEAN-FU KIANG,
AND JIN AU KONG, FELLOW, IEEE

Abstract — A rigorous analysis of the resonance frequency problem of
both the cylindrical-rectangular and the wraparound microstrip structure is
presented. The problem is formulated in terms of a set of vector integral
equations. Using Galerkin’s method to solve the integral equations, the
complex resonance frequencies are studied with sinusoidal basis functions
which incorporate the edge singularity. Furthermore, the complex reso-
nance frequencies are computed using a perturbation approach. Modes
suitable for resonator or antenna applications are investigated.

I. INTRODUCTION

YLINDRICAL microstrip structures are important
C in many applications where -they can be flush-
mounted on curved surfaces such as space vehicles, mis-
siles, and boosters {1]. The microstrip antenna elements

that are commonly used on these surfaces are of either the

wraparound or the ¢ylindrical-rectangular type.

The resonance frequencies of microstrip patches placed
on planar structures have been studied extensively [2]-[9].
On the other hand, the resonance frequencies of microstrip
patches placed on curved surfaces have attracted less at-
tention. The resonance frequencies of cylindrical-rectan-
gular microstrip patch were calculated using a magnetic
wall cavity model [10], thus ignoring the fringing field
effects and the radiation loss. In such an analysis, the
resonance frequencies obtained are purely real, thus limit-
ing the validity of the obtained results. In [11] the mi-
crostrip antennas on cylindrical structures were consid-
ered, but no useful results for the resonance problem have
been presented.

In this paper, we rigorously analyze the resonance fre-
quency problem of both the cylindrical-rectangular and
the wraparound structure using a full-wave approach. The
formulation leads to a set of vector integral equations for
the current distribution on the conducting patches. This
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Geometrical configuration of (a) a cylindrical-rectangular mi-
crostrip patch and (b) a wraparound microstrip patch.

Fig. 1.

set of vector -integral equations is then solved using
Galerkin’s method. Two different sets of basis functions
are used to expand the current distribution, one of which
takes into account the edge singularity condition. The
resulting nonlinear eigenvalue equation is then solved nu-
merically. Both the real and the imaginary part of the:
complex resonance frequencies are computed as functions
of the dielectric substrate thickness. To ascertain -the re-
sults obtained from the Galerkin method, a perturbation
approach based on the single-mode approximation is also
used to compute the complex rescnance frequencies of the
cylindrical-rectangular and wraparound resonators. Dif-
ferent plots for the real and imaginary parts of the reso-.
nance frequencies of TE,, HE., HE,,, and HE,, are
presented. :

II. VECTOR INTEGRAL EQUATION FORMULATION

The geometry of the problem is shown in Fig. 1. An
infinitely long metallic cylinder of radius a is covered with
a dielectric substrate (region 1) of outer radius b, electric
permittivity €;, and magnetic permeability p,. Region 2 is
free space with parameters €, and p,. A metallic patch is

~printed on the surface of the dielectric substrate. The

metallic cylinder and the patch are assumed to be perfectly
conducting.
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For an arbitrary distribution of currents on the metallic
patch which vary harmonically as e ™%, the z components
of the electric and magnetic fields are given by

E (p, ¢,z)——2—1— Z e’""’/ dk,e'*
(k

n=—o0

AOHD (K 1o p)+ B{¢ )Jn(klpp), a<p<b (12)
. a

A(ze)H'gl)(kzpp)’ b<

1 o 0
_— ¢ 1k, z
Hz(p7¢,z) 27Tn=2300e ‘/—oodkze

APHO (ky,p0)+ BOJ, (K, ,), a<p<b (1b)
. ’ ib

APHD (ko). b<s

where the field spectral amplitudes A4{®), 49, B{®), AM
AP, and B{" are functions of the harmonic order n and
the spectral variable k&, and

kZ kz — kZ k2
By imposing the boundary condltlons on the tangential
components of the electric field (E, and E,) at the per-

fectly conducting inner cylinder (p = a), we obtain the
following relationships between the spectral amplitudes:

B{?) = —,4{Y (2a)

B(M = —¢ 4" (2b)
where
H,ﬁl)(klpa)
n=—7r 3a
Jn(klpa) ( )
HO(k
n ( 1pa) (3b)

§=—r -
Jn (k 1pa)
By matching the tangential components of the electric field
(E, and E,) across the boundary at p = b, we get

o HO(o,h) 1
! Jn(klpb) Mo~ M,
H®(kyb) 1 [k,

A

(4a)

AM = A(h)
! Jn(klpb) g0 g k2p ,B
(€.~ 1) iwe, k, n 1 40| (4v)
—(e — _
k2p kzp klpb B
where .
Hrfl)(klpb)
=—F 5a
o Jn(klpb) ( )
H{(ki,b)
fo= 5b
0 Jn/(klpb) ( )
Jn,(klpb)
=—" 5¢
7, (k) ()
H® (ky,b)
" HO(kayb) G
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and

€
€, =—.
€

We notice from (4) that cross-polarization occurs. With
the exception of the n =0 case, the normal modes are no
longer pure TE or TM. These hybrid modes are commonly
classified as HE,,, or EH,,, which, respectively, tend to
TE,,, and TM, , for vanishingly thin substrate.

Next we will derive an expression which relates the
current on the patch to the spectral amplitudes of the
fields. To do so, we match the discontinuity in the tangen-
tial components of the magnetic field (H, and H,) to the
current on the patch. Then, applying the orthogonality
relationships on the Fourier series expansion with respect
to ¢ and the Fourier transform with respect to z, and
using (2) and (4), we obtain a relationship between the
surface current and the field spectral amplitudes as fol-
lows:

T (k,) = X,(k,)-a, (6)

where

on(k2)

k)= l L (k.)

] P f d<1> _”"”f dze ") (o, z)
(7

A2 |
T X Xu]
X, (k,)= 9
()=l ©)
and
Xn=—(¢,—1) o & —n_l rt (10a)
ki Koy ki,p ,8
k
X, =—|1- 2% (10b)
kZp B
iwe, ks,
X, = — 2P .(e)
21 kzp |:a €rB klpr
2 2
n 1
(e,—1) 2| = ( ) —r® 1 (10c
ki \ ks, | \ kb | B (10c)
X, _ ke m _fﬂﬁr(m (10d)
kyp kopb ky, B
T’O—_gl
r® = 1la
s (11a)
§o— 1
© = ’ 11b
—— (11b)
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On the other hand, the Fourier transforms of the tan-
gential components of the electric field at p = b are related
to the field spectral amplitudes as follows:

E, (k) =5,(k.) a, (12)
where
E, (k
£, () = | Bt
E:n(kz)
1 w0
=——f d¢e“’”“’f dze™"E (¢,z) (13)
TY—m —o0
= S11 Su}
S (k)= 14
(k) [Sn S (14)
S k. o (15a)
= - a
1 ko, kypb
lw
S, = k” % (15b)
2p
S, =1 (15¢)
S,,=0. (15d)

Thus from (6) and (12), we obtain the following relation-
ship between the patch current and the electric field on the
patch represented in the spectral domain:

E,(k.) =T,(k.)-J,(k.) (16)

where I:‘n(kz) can be obtained from (10) and (15) as
follows:

= Iy rlz]
(k,) = 17
()[% o )
( ) k2p) Q)
k2p klp
— | « (x—e,B r("’) (18a)
kzp
1k, n k,, a
r,=T 1-—=2—p® (18b)
, 1T Ak, kzpb[ ki, I ]
1 kq, @
[,=—{1——%—r® 18¢
22 A[ kzp B :| ( )
and A is the determinant of i,( k), given by
iwe, ky, ky
A= a—e,,B——r(e)}{l—————r”’)}
k2p |:{ klp klp 18
K2 [k 2( n )21
+(e,—1) z —r™ (. (19)
( ) klpkzp(kzp) ki,b| B (

Note that the matrix i(kz) is symmetric (I}, =T13,),

which is a consequence of reciprocity. Using (4) and (6),
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the field spectral amplitudes in region 1 can be obtained as

a,=Y,(k.)-4,(k,) (20)
where
40
a1= A{h) Jn(klpb) (21)
== _ Yu Y,
n(kz) - [Y21 1722 (22)
1k, n ky, a
Y, =-— 1- -2 2,0 23a
YAk, kzpb{ ki, B lno-m (232)
P P ) (23b)
= — —-——r —_—
12 A k2p B No— M,
_Liee ky 1) 1)( k, 2( )2
BN Ky ke BT Ky, | \ Kb
- a{(x—e Bﬁr(e)} ! (23¢)
i 1p E0—51
e )1 iwe, k, n 1 (230)
—(e —
A k2p k2p klpb B go—g

where A is given by (19).

Imposing the mixed boundary conditions at p=5 on
the tangential components of the electric field E (¢, z)
and on the current density J(¢, z), we obtain a set of
vector integral equations given by

Es(¢,z)=l 2 e’"¢f dke””l‘(k)](k) 0

n=—o0

on the patch (24)

1
H(9,2) = 2 e”’“’/ dk e™1 (k.) =0

outside the patch. (25)

The next step is to solve this set of vector integral
equations using the Galerkin method.

III. GALERKIN’S METHOD

Now we solve the set of dual integral equations (24) and
(25) by using Galerkin’s method. We expand the current
J(¢,z) in terms of a set of basis functions which is
complete over the support of the patch:

J(p,z)=Y, Enm(q),z)Anm on the patch
=0 outside the patch.

(26)

The spectral components of this current distribution are
given by

1 dy -
J,(kz)=—2—7-7—f dpe [ ' dze” (6, 2)
. .

= Y T lK,) A, (27)
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where
= 1 T } d, -
— —irg [0 —ik,z
T am(k;) = o f_ﬂdw f;dod” K,m(9,2). (28)

Substituting (27) into (24), we obtain

§ einbfoo

r=—00 o0

dk, e T (k) X T ()4, =0

on the patch. (29)

Next, the above equation is tested by the same set of
basis functions that was used in the expansion of the patch
current. This is done by premultiplying (29) by K ; A 2)
and integrating over the patch area. Thus we get

Y 0y A =0 (30)
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Nontrivial solutions can exist if the determinant of (30)
vanishes, that is,

(32)

This is the eigenvalue equation for the cylindrical mi-
crostrip resonator. The roots of this equation are complex
numbers, indicating that the structure has complex reso-
nance frequencies. The imaginary part of the complex
resonance frequencies accounts for the radiation loss.

Now, we apply the above formulation to find the reso-
nance frequencies of the cylindrical-rectangular microstrip
patch shown in Fig. 1(a) and the wraparound patch of
Fig. 1(b).

In choosing the set of basis functions for the expansion
of the patch current, one has to ensure that the normal
component of the current vanishes at the edge whereas the

det]épq,nml = f(OJ) =0.

o tangential component satisfies the edge condition. Thus,
where for the wraparound patch,
= oo x —_ = = = =
Opam= "k, T T pyk?) Tk T k). Rop(62) = e, (2) (33)
(31) where — 7 < ¢ <7, and
1 ma
gl ) "
Q,(z) = (34)
(mm
0 Sln<2—do(2+d0)}
In this case we have
7 ma m [T 7
5{]0(—2—“k2d0)+(—1) Jo(—2—+kzd0)} 0
= . m
Z.ni;z(kz) =8nrlm ma Sln(T_kldO) (35)
0 -z( —) :
2do) 5 (mT
=7\ 24,

For the cylindrical-rectangular patch,

Ko(6,2) =0,(6)-8,.(2)

where — ¢, < ¢ < ¢, and zero otherwise, and

. na
Sln{2—¢0(¢ + ¢o)}

Dl

() =
0

(36)

0

1 (37)

nT :
cos{zT)O(QH— qso)}
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In this case we have
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i 0 {Jo(n%—r%) (-1 J( . +r¢0)}_
_{Jo(mz kd0)+( 1) JO(7+kd0)} 0 -
e
0 2d, 2
L (Zdo) kf*(‘:l—d%)

Using the explicit expressions of i(kz) given by (18)
together with (35), equation (31) reduces to

0,onm =821+ (1) "] [ Cdk T (k)

T,(k,) T, (k) (39)

for the wraparound patch.
Similarly, from (18) together with (38), equation (31)
reduces to

Qpgnm= (14
f dk, Z

for the cylindrical-rectangular patch.

—1)"*"][1+(—1)"*’"]

T k) T () (40

IV. PERTURBATION FORMULA FOR THE
RESONANCE FREQUENCIES

In the limit of a thin substrate, the resonance frequen-
cies approach that of the magnetic-wall cavity, and a
perturbation approach can be used to calculate the reso-
nance frequencies. In this limit, the cylindrical microstrip
structure can be viewed as a perturbation of a cylindrical
resonator with perfectly magnetic sidewalls. The resonance
frequency shift of this perturbed magnetic wall cavity
resonator can be computed as [4], [12]

L
Avw=0f—w,= Y (41)7
where
L=—if ASars;a.(E,*><1f1f) (42)
and
1
W)= e [[[ IEP (43)

where E, and w, are the electric field and the resonance
frequency of the unperturbed cavity; H, and «, are the

magnetic field and the resonance frequency of the per-
turbed cavity (i.e., the open cavity); (W;), is the unper-
turbed time-averaged total energy stored in the cavity; and
AS is the surface area of the sidewalls. In the unperturbed
case, the field components are independent of p since the
substrate thickness is assumed thin. Thus, the only existing
modes are the TE,,, modes, for which E, is the only
nonvanishing electric field component. Thus (42) can be
written as

L=—-iffASdSEp

where H,, and H,, can be expressed in terms of the
patch’s current spectral amplitude as

—¢H,, + zH¢f] (44)

00

1
- zrqS ik,zpt
Hzf(P7¢7Z) 27 " f dk € Rzr(p’kz)

po=—

Y(k)-d(k,) (450)

Hy (o, 9, Z)— Z mpf_ dk "R, (p, k.)
F(k,)-Y,(k,)-J(k,) (43b)
where
0 Hr(l)(klpp)_gz‘lr(klpp)
_ 46
R, (p,k.) H J,(ky,b) )
HY(ky,p) = n,J; (kyp)
r
Ry 0. k) =7 ki b) | = [E® (kyp) = &, (Kyp)]
kipp
(47)
iweg
_ k
Fey=| ", )
O _ z

and i_/—,(kz) is given by (22).
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Let us consider the perturbation of a TE,,, mode whose
unperturbed resonance frequency is w,,, given by

Kpm 1 ( n )2 ( m )2 (49)
Wy = = —| T
VBof1  YHeEy a 2d,

for the wraparound patch, and

ko 1 ( na )2 (mrr)2 (50)
@Cym = = 5
VHoEL  yHofy 2¢9a 2d,

for the cylindrical-rectangular patch.

The difference between (49) and (50) when ¢, = 7 is due
to the different boundary conditions satisfied by the cur-
rent at the edge of the patches. The current J, has to
vanish at ¢ = ¢, for tthe rectangular cylindrical patch,
which is not the case for the wraparound patch.

For this mode of the wraparound patch, the unper-
turbed electric field is given by

(51)

, mam
E,(¢,z)=E,,e"cos 2—d;(z +d,)

and the patch current is given by

J($.2) = ——E,,e"™Q,(z)-1,,  (52)
l nmi~Q
where
in in
b a
Tom=| mm | = mar (52b)
2, 24,

The unperturbed time-averaged total energy stored in
the wraparound cavity can be obtained as

<WT>1' = WaellEnmlz(l‘*_ 8m0)hd0 (53)
where h=b — a.

For the cylindrical-rectangular patch, the unperturbed
electric field is given by

naw ma
Epl((l)’z):EnmCOS 2_%(¢+¢0) Cosliz—do(z_*_do)
(54)
and the patch current has the form
I($,2) = E,8,(¢)-8,(z)-
where
nw nw
2¢4b 2¢ya
T = | mr |=| ma (55b)
| |
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The unperturbed time-averaged total energy stored in
the cylindrical-rectangular cavity can be represented by
the following expression:

1
W)= EellEnm|2(1 +8,0)(1+ 8,0) doahd,.  (56)
In both the wraparound and the cylindrical-rectangular

case, the Fourier transform of the patch’s current in the
unperturbed state is given by

JO(k,) = EpTonr(K) e (57)

10y, o

In the limit when % /a — 0, the patch current can be
approximated by its value in the unperturbed state and
hence

J(k,) = IO (k,). (58)

Thus, in the thin substrate limit, using (51), approximate
expressions for the magnetic field components H,, and
H,, can be obtained.

For the wraparound patch, using (44) we can get

2iah

Ty, bho

L=

B[ = (=17 [ ah. ey ()
F(k,)-Y,(k,)T, ,m(k,)

00 . = = =

+f_ dkze_lkZdOprn(kz)'F(kz)'yvn(kz)'Tn.nm(kz) .Tnm
(59)

where

R (k T (PdooR. (p.k

¢n( Z)_Ziah/a pp q)n(p’ z)

1
1 1 Jn(klpa)
" kya J,(kpya) n 1
klpa Jn,(klpa)

. (60)

It can be easily shown that
—(=1D)"F(k,)

Y, (k)T (k). (61)

F(— k) Y(~k)-T, on(— )

Il

Hence (59) can be written as

ah

|Enml2st "

dnm ‘nm

(62)

. m8
Lz—(—l) ;

nmi” 0

where
‘ oo i ma ‘
s¢nm=f0 dk sin| —— — k.do | Ry, (k,)

F(k,)-Y,(k,)-T, .. (k). (63)

Finally, we get the perturbational expression for the reso-
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nance frequency of the wraparound cavity as

1(_),,,122 1 1151
KA R ) (L4 8,0) do 2y ™ |
(64)

For the cylindrical-rectangular patch, using (50) we obtain

m+n 4 2
L= (0" 2) S Bl Vi (69)
K ‘*’nml~"0
where
l'/nm—_lj4>nm+_ljznm (66)
nw
® sm(T—rqﬁo)
Ud:nm_ Z r 2
r=1 rz_(_"_'”_)
2¢,
00 mm
) dkzsin(——kzdo)kg,,(kz)
0
F(k,) Y,(k,) T, (k)
® 1 na
- §, o[ )
r=0 (1+8r0) 0
mar
sin(——kzdo) _
[<%e] 2 = =
[ ik, R (k) V() T, (k)
0 k2_ ﬂ ’
(5]
(67)
and

T p
R,(k) =5 ['4,R.(0, k)
0] 1 1 1
~ 68
[1 kipa Jr(klpa) Jr’(klpa) (68)
where we have employed the symmetrical properties of the
integrands.
Finally, we get the perturbauonal expression for the

" resonance frequency of the cylindrical-rectangular cavity
as

2 2
W = Wy ll+2( )m+"(—)
7
1 1 1
Vt

T4 8,9) (148,9) dodo k2, ™ m}. (69)

Thus (64) and (69) provide a perturbational approxima-
tion of the resonance frequencies of the wraparound and
the cylindrical-rectangular cavity, respectively.

V. NUMERICAL RESULTS

The resonance in wraparound and cylindrical-rectangu-
lar microstrip patch resonators is presented using two
different approaches: Galerkin’s method (GM) and the
perturbation approach (PA).
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®)

Fig. 2. (a) Real part of the normalized resonant frequency of a
wraparound microstrip patch: ¢ = 2.3¢y, ¢ =20 cm, dy=4 cm, TE,
mode,— — o ——(GM),——a——(PA). (b) Imaginary part of the
normalized resonant frequency of a wraparound microstrip patch:
=236, a=20 cm, dy=4 cm, TE; mode,——e°——(GM),
——a——(PA).

In applying Galerkin’s method and evaluating the ma-
trix elements @P 2nml given by (39) or (40), the path of
integration in the complex k, plane has to be defined.
Since the resonance frequencies are complex due to the
radiation loss, the branch point and pole singularities can
move below the real axis of the complex k, plane. There-
fore, the integration path is deformed below the real axis
so that it does not cross the migration path of the singular-
ities [9], {13].

Numerical results presented in this paper show the real
and imaginary parts of the resonance frequencies for the
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Fig. 3. (a) Real part of the normalized resonant frequency of a
wraparound microstrip patch: ¢ =2.3¢y, a =20 cm, dy =4 cm, HE,,
mode,—~— o ——(GM),——a-——(PA). (b) Imaginary part of the
normalized resonant frequency of a wraparound microstrip patch:
€ =23¢;, a=20 cm, dy=4 cm, HE;; mode,——o——(GM),
——a——(PA). '

wraparound and cylindrical-rectangular microstrip
patches. The quality factor and the fractional bandwidth
can be directly computed using the following expressions
[14]:

’

w

2‘&’”

1

= BW.=—
€ 0
where &’ and w” are the real part and the imaginary part
of the resonance frequency, respectively.

In Fig. 2(a) and (b), the real and imaginary parts of the
normalized resonance frequency of the TE,;, mode for the
wraparound resonator are displayed as a function of & /d,.
The normalization is with respect to w, of the magnetic-wall

1.06 T T T T T T
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1.2 -
1.00 —
E
3 0.98} -
Q O,
= NG
BQS - \v\o 7
\qso\
B.94 - q\g\q -
-z
8.92 - .
3.9 1 ! ! 1 1 i 1
0.00 0.02 0.94 0.06 6.08 0.16 0.12 3.14 6.16
h/dy
(a)
PE-3 T T T T T T T
5L 3\
-10 = \ \o
\o
\ T~
_]5 f— " \o
3 \o-
=~
3 B \
E v
-25 \V -
_3@ - \ —
v,
-5 \q T
AN
-40E-3 1 1 1 1 1 | ]
0.00 0.02 0.04 D.O6 0.08 B6.10 0.12 B.14 B.16
R/do
(b)
Fig. 4. (a) Real part of the normalized resonant frequency of a

wraparound microstrip patch: ¢ =2.3¢,, a =20 cm, dy =4 cm, HE ;
mode,—— o ——(GM),— —a-——(PA). (b) Imaginary part of the
normalized resonant frequency of a wraparound microstrip patch:
€§=23¢y, a=20 cm, dy=4 cm, HE;; mode,——°——(GM),
——A——(PA).

cavity. In the calculation using Galerkin’s method, the
basis functions with n=—1, 0, 1 and m=0,1,2 are em-
ployed. Basis functions without edge condition have been
used, and the computed results for the resonance fre-
quency are found to differ by at most 0.3 percent. The
results using the perturbation approach and Galerkin’s
method are shown to be asymptotic to each other for a
thin dielectric layer.

Fig. 3(a) and (b) shows the real and imaginary parts of
the complex resonance frequencies of the HE,, mode for
the wraparound resonator for a substrate with a dielectric
constant of 2.3. Fig. 4(a) and (b) shows the real and
imaginary parts of the complex resonance frequencies of
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Fig. 5. (a) Real part of the normalized resonant frequency of a cylindri-
cal~rectangular microstrip patch: ¢ =23¢), a=20 cm, dy=4 cm,
¢ =24°, HEy mode,—— o ——(GM),——a——(PA). (b) Imagi-
nary part of the normalized resonant frequency of a cylindrical —rect-
angular microstrip patch: € = 23¢;, a=20 cm, dy=4 cm,
¢y =24°, HE,; mode,—— o ——(GM),——a——(PA).

the HE,, mode for the wraparound resonator for a sub-
strate with a dielectric constant of 2.3.

For the cylindrical-rectangular resonators, basis func-
tions with m=0,1,2 and »=0,1,2 are employed in
Galerkin’s method. Eleven terms for the summation over r
in (40), (66), and (67) are found to be sufficient to obtain
convergent results.

Fig. 5(a) and (b) shows the resonance frequencies of the
HE,, mode of the cylindrical rectangular microstrip res-
onator using a dielectric constant of 2.3. It is also found
that the results using basis functions without edge singular-
ity differ from that with edge singularity by at most 0.5
percent.
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Fig. 7. Imaginary part of the normalized resonant frequency of a cylin-
drical-rectangular microstrip patch: e, =23>¢,, a=20 cm, dy=4
cm, ¢y =24°,—— o ——(GM),

In Fig. 6, a comparison of the imaginary parts of the
resonance frequency for three different modes of the
wraparound patch is displayed. Results indicate that the
TE,, mode and the HE;; mode are the efficient radiating
modes, having about the same radiating loss, and that the
HE,, mode is more appropriate for resonator applications.

In Fig. 7, a comparison of the imaginary parts of the
resonance frequency for three different modes of the cylin-
drical-rectangular patch is displayed. Results indicate that
the HE; mode is the most efficient radiating mode among
these three modes, and that the HE;; mode is more
appropriate for resonator applications. The radiation loss
of the HE,, mode of the cylindrical-rectangular patch is
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larger than that of the HE;, mode of the wraparound
patch. ,

VI. CONCLUSIONS

A rigorous analysis of the resonance frequency problem
of both the cylindrical-rectangular and the wraparound
microstrip structure is presented using two different meth-
ods: an integral equation formulation and a perturbation
approach. Using Galerkin’s method in solving the integral
equations, the complex resonance frequencies are studied
with sinusoidal basis functions. The edge singularity of the
patch current is shown to have no significant effect on the
accuracy of the results. Furthermore, it is shown that the
HE,, modes of the cylindrical-rectangular and
wraparound patches are more appropriate for resonator
applications. The HE,, and TE,, modes of the cylindri-
cal-rectangular and wraparound patches, respectively, are
efficient radiating modes.
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