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Abstract —A rigorous anafysis of the resonance frequency problem of

both the cylindrical-rectanguktr and the wraparound microstrip structure is

presented. The problem is formulated in terms of a set of vector integral

equations.’ Using Galerkin’s method to solve the integral equations, the

complex resonance frequencies are studied with sinusoidal basis functions

WMch incorporate the edge singularity. Furthermore, tbe complex reso-

nance frequencies are computed using a perturbation approach. Modes

suitable for resonator or antenna applications are investigated.

I. INTRODUCTION

CYLINDRICAL microstrip structures are important

in many applications where they can be flush-

mounted on curved surfaces such as space vehicles, mis-

siles, and boosters [1]. The microstrip antenna elements

that are commonly used on these surfaces are of either the

wraparound or the cylindrical-rectangular type.

The resonance frequencies of microstrip patches placed

on planar structures have been studied extensively [2]–[9].

On the other hand, the resonance frequencies of microstrip

patches placed on curved surfaces have attracted less at-

tention. The resonance frequencies of cylindrical-rectan-

gular rnicrostrip patch were calculated using a magnetic

wall cavity model [10], thus ignoring the fringing field

effects and the radiation loss. In such an analysis, the

resonance frequencies obtained are purely real, thus limit-

ing the validity of the obtained results. In [11] the mi-

crostrip antennas on cylindrical structures were consid-

ered, but no useful results for the resonance problem have

been presented.

In this paper, we rigorously analyze the resonance fre-

quency problem of both the cylindrical-rectangular and

the wraparound structure using a full-wave approach. The

formulation leads to a set of vector integral equations for

the current distribution on the conducting patches. This
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Fig. 1. Geometrical configuration of (a) a cylindrical-rectangular mi-

crostrip patch and (b) a wraparound microstrip patch.

set of vector integral equations is then solved using

Galerkin’s method. Two different sets of basis functions

are used to expand the current distribution, one of which

takes into account the edge singularity condition. The

resulting nonlinear eigenvalue equation is then solved nu-

merically. Both the real and the imaginary part of the

complex resonance frequencies are computed as functions

of the dielectric substrate thickm?ss. To ascertain the re-

sults obtainecl from the Galerkin method, a perturbation

approach based on the single-mode approximation is also

used to compute the complex rescmance frequencies of the

cylindrical-rectangular and wraparound resonators. Dif-

ferent plots for the real and imaginary parts of the reso-

nance frequencies of TEOI, HEC,I, ~Elo, and HEII are

presented.

II. VECTOR INTEGRAL EQUATION FORMULATION

The geometry of the problem is shown in Fig. 1. An

infinitely long metallic cylinder of radius a is covered with

a dielectric substrate (region 1) of outer radius b, electric

permittivity cl, and magnetic permeability I JO.Region 2 is

free space with parameters c~ and pO. A metallic patch is

printed on the surface of the dielectric substrate. The

metallic cylinder and the patch are assumed to be perfectly

conducting.
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For an arbitrary distribution of currents on the metallic

patch which vary harmonically as e ““’, the z components

of the electric and magnetic fields are given by

Ez(p, @,z) = & ~ e’””j~ dk, e’k”
~=—~

“{

4e)KWlpP) + %%;k:pfoj

M)m’)(%)$

~~~<b (la)

Hz(p, @,z) =; ~ e’no~m dk, elkzz
~=—w

“{

‘f’)Hf)(k@)+ ‘f’)J.i~pp)
;::<b (lb)

A\h)H:l)(k~Pp),

where the field spectral amplitudes A\c), A$), B[e), A\fi~,
[~) are functions of the harmonic order n andA\h), and B1

the spectral variable k= and

k:–k;P=k:=k; –k&

By imposing the boundary conditions on the tangential

components of the electric field (E, and E@) at the per-

fectly conducting inner cylinder (p= a), we obtain the

following relationships between the spectral amplitudes:

Bfe} = – ~ZA:@ (2a)

Bf~l = _ &&) (2b)

where

HJ1)( kl,a )

‘z= J~(klPa)
(3a)

H~l)’( klPa )

“= J:(kl,a) “
(3b)

By matching the tangential components of the electric field

(Ez and E+) across the boundary at p = b, we get

Hj1)(k2pb) 1 A(,)
Aje) =

J.(W) ~o – ~,
2 (4a)

H;l)(k,Pb) 1
A$h) =

[

‘lP a~$h)

J.(klpb) i% – f, Lp B

1-(,r-l)~:fi;Af) (4b)
2p 2p lp

where

H~l)(klpb)

‘0= ~~(kl,b)
(5a)

H;l)’( klpb)

‘0= J;(klPb)
(5b)

Jn’(klpb)

‘= .TH(klPb)
(5C)

H:l)’( k2pb )

a= H:1)(k2Pb)
(5d)

and

We notice from (4) that cross-polarization occurs. With

the exception of the n = O case, the normal modes are no

longer pure TE or TM. These hybrid modes are commonly

classified as HE.~ or EHmn, which, respectively, tend to

TE~~ and TMn~ for vanishingly thin substrate.

Next we will derive an expression which relates the

current on the patch to the spectral amplitudes of the

fields. To do so, we match the discontinuity in the tangen-

tial components of the magnetic field (H= and Ho) to the

current on the patch. Then, applying the orthogonality

relationships on the Fourier series expansion with respect

to o and the Fourier transform with respect to z, and

using (2) and (4J we obtain a relationship between the

surface current and the field spectral amplitudes as fol-

lows:

Jn(kz) = ~n(k, ).a2 (6)

where

(7)

II‘$) Hj1)(k2pb)
‘2= /f~h)

[1

X12
~~(kz) = :2: x

22

and

(8)

(9)

iuc2 k, n 1
xll=–(6r–1)— —_ _r(h)

k2p k2P klpp ~

‘12= -H~r(h’l

X21= ~
“[

~—#Er(e)
2p

-(,r:;~(~)(fi];r(k)] ,,OC)

k,pi+%fr(h)l
X22=–L

‘(h) = ‘o– ‘2

$0- ‘$,

(lOa)

(lOb)

(lOd)

(ha)

(llb)
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On the other hand, the Fourier transforms of the tan-

gential components of the electric field at p = b are related

to the field spectral amplitudes as follows:
—

E$n(kz)=Sn(kz).a2 (12)

where

[1

%.( k.)
E~~(kz) =

Em ( k,)

(15a)

(15b)

S21= 1 (15C)

S22=0. (15d)

Thus from (6) and (12), we obtain the following relation-

ship between the patch current and the electric field on the

patch represented in the spectral domain:

E,n(kz) =7n(kz).Jn(~z) (16)

where ~~(kZ) can be obtained from (10) and (15) as

follows:

(17)

‘22=w5r(h)l
(18c)

.
and A is the determinant of x.( k, ), given by

—
Note that the matrix ~.(k=) is symmetric (r21 = r12),

which is a consequence of reciprocity. Using (4) and (6),

the field spectral amplitudes in region 1 can be obtained as

al=~.(kz).~(kz)

where

[1
@)

Jn(hpb)al= A~h)

[1

Yll Y12
‘*(kz) = y21 y

22

n

-[

l–s:r(h)
’11 = – ~ < k2pb klp B

yl2=i--r’”l-klp a 1“

kzp P –~o – ~1

(20)

(21)

(22)

1
— (23a)
no – ~,

(23b)

(23c)

where A is given by (19).

Imposing the mixed boundary conditions at p = b on

the tangential components of the electric field E,(4, z)

and on the current density Y( O, z), we obtain a set of

vector integral equations given by

on the patch (24)

J(o, z) = & _, ei”~~m dk=ei~’’J.(kz) = O
n— co —m

outside the patch. (25)

The next step is to solve this set of vector integral

equations using the Galerkin method.

1[11. GALERKIN’S METHOD

Now we solve the set of dual integral equations (24) and

(25) by using Galerkin’s method. We expand the current

.l(@, z) in terms of a set of basis functions which is

complete over the support of the patch:

.l(q5, z) = ~ &( I& Z)”A~m on the patch
n,m

=0 outside the patch.

(26)

The spectral components of this current distribution are

given by

= ~ i,.m(k,)An,,, (27)
n,m



1776 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO, 11, NOVEMBER 1989

Substituting (27) into (24), we obtain

~ ei’$~m dk:e’kz~,(kz). ~ T,nm(k,).An~=O
p=—~ —m n,m

on the patch. (29)

Next, the above equation is tested by the same set of

basis functions that was used in the expansion of tie patch

current. This is done by premultiplying (29) by ~~q(+, z)

and integrating over the patch area. Thus we get

—

Ea pq, nm .Anm=O (30)
n,m

where

(31)

iim(z) =

In this case we have

Nontrivial solutions can exist if the determinant of (30)

vanishes, that is,

det \Qpq, ~,,ll =f(u) = O. (32)

This is the eigenvalue equation for the cylindrical mi-

crostrip resonator. The roots of this equation are complex

numbers, indicating that the structure has complex reso-

nance frequencies. The imaginary part of the complex

resonance frequencies accounts for the radiation loss.

Now, we apply the above formulation to find the reso-

nance frequencies of the cylindrical–rectangular microstrip

patch shown in Fig. l(a) and the wraparound patch of

Fig. l(b).

In choosing the set of basis functions for the expansion

of the patch current, one has to ensure that the normal

component of the current vanishes at the edge whereas the

tangential component satisfies the edge condition. Thus,

for the wraparound patch,

X.n(@, z) =e’””fiM(z) (33)

o

0

{
sin &(z+do)

o }

(34)

H: Jo
) (

~–k=do +(–l)mJo ; + k=do
I

~, ~,,,(k,) =8~,im
o ‘v Sikd”) - (35)

()
i2 —

2do

(IJ

2

k~. ~

o

For the cylindrical–rectangular patch,

EA#v)=mmm(z)

where – @O< @< @oand zero otherwise, and

“(fl(gb++o)
‘ln 2+” }

o
1

(36)

(37)
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In this case we have

‘r,fl~(kZ)=~in+~+l

o

0

0

{(Jo
) (

~–kzdo +(–l)mJO ~+k,dO
))

o

m7r

-)

sin
(

~ - kzdo
)

2do

()

2

& . ;;

o

Similarly,

reduces to

Zpq,.m =

(Jo(%r4+@)nJ4Y+r4}

L

Using the explicit expressions of ~.(k,) given by (18)

together with (35), equation (31) reduces to

Qpq, nm =8P~2[l+ (–l)q+m]~ndkz~;:. q(k$)
o

—
.T~(kz).~H,.~(kz) (39)

for the wraparound patch.

from (18) together with (38), equation (31)

[l+(-l)p+n][l+( -I)q+m]

for the cylindrical-rectangular patch.

IV. PERTURBATION FORMULA FOR THE

RESONANCE FREQUENCIES

In the limit of a thin substrate, the resonance frequen-

cies approach that of the magnetic-wall cavity, and a

perturbation approach can be used to calculate the reso-

nance frequencies. In this limit, the cylindrical microstrip

structure can be viewed as a perturbation of a cylindrical

resonator with perfectly magnetic sidewalls. The resonance

frequency shift of this perturbed magnetic wall cavity

resonator can be computed as [4], [12]

L
Au=uf–q=-

4(WT),

(41)

where

L= -ij~~dsfl(~: x%) (42)

and

(43)

where E, and o, are the electric field and the resonance

freauencv of the un~erturbed cavitv: H. and u. are the

(38)

magnetic field and the resonance frequency of the per-

turbed cavity (i.e., the open cavity); ( WT)i is the unper-

turbed time-averaged total energy stored in the cavity; and

AS is the surface area of the sidewalls. In the unperturbed

case, the field components are independent of p since the

substrate thickness is assumed thin. Thus, the only existing

modes are the TE~~ modes, for which EP is the only

nonvanishing electric field component. Thus (42) can be

written as

where Hz~ and H@~ can be expressed in terms of the
patch’s current spectral amplitude as

.~(kz).~(kz) (45a)

H#f(P>& ‘z) = & _jE e’r$jm %eikz’%r(p> kz)
r——m —co

—

“F(k,)-E(k,)”J(k,) (Osb)
where

[1
() H:l)(k,pp) – LJ.(L,P)

Rzr(p>k,)= ~
Jr( kl,b)

(46)

1 [ H:l)’(klPp) – TiJ, ‘(klpP) ]

and ?,(k,) is given by (22).

(47)

(48)

--, . ., L /. J 1
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Let us consider the perturbation of a TE~~ mode whose The unperturbed time-averaged total energy stored in

unperturbed resonance frequency is un~ given by the cylindrical-rectangular cavity can be represented by

the followin% expression:

for the wraparound patch, and

for the cylindricd-rectangular patch.

The difference between (49) and (50) when @o= n is due

to the different boundary conditions satisfied by the cur-

rent at the edge of the patches. The current J+ has to

vanish at @= @o for tthe rectangular cylindrical patch,

which is not the case for the wraparound patch.

For this mode of the wraparound patch, the unper-

turbed electric field is given by

In both the wraparound and the cylindrical-rectangular

case, the Fourier transform of the patch’s current in the

unperturbed state is given by

1
E ~ (k2). Tn~. (57)v)(~,) = G ?lm r,rli?l

In the limit when h/a ~ O, the patch current can be

approximated by its value in the unperturbed state and

hence

~(k,) = Jw(k=). (58)

Thus, in the thin substrate limit, using (51), approximate

expressions for the magnetic field components Hzf and

H@J can be obtained.

For the wraparound patch, using (44) we can getEP, (+, z) = En~ein@cos

[%(z+do)l “1)
2iah

and the patch current is given by LX —lE~~12[–(–1)*~~ dkge’~’~ol?~n(k,)
~%#o —w

1
~(@, z)=— En~ei”@fi~(z). Tn~ (52a)

iun~po .F(kz).7n(k=) .~,nM(k,)

where ~n(kz).~(k=).~n(kz).~,nm(k,)].~n+[mdk, e–%dORt

12dd 1 2dd
Ro.(k=) = &-bdPPRo& k,)

The unperturbed time-averaged total energy stored in
a

1the wraparound cavity can be obtained as

(W~)i ~ ~a~JE.m12(l+ ~~O)hdO (53)
1 1

= kloa Jn(kloa)

where h = b – a.

For the cylindrical-rectangular patch, the unperturbed

electric field is given by It can be easily shown that

J.(%4

n 1
——

kp~ J;(’w)

‘ (59)

(60)

EP1(@, Z) = Enmcos

[RY+oo)lcos[%(z+ do)]
~(-k,).~n(–kz).~,n~(–k=) = -(–l)~~(k,)

(54) .FJkz).;n, nm (k.)- (61)

Hence (59) can be written as
and the patch current has the form

where
where

[1El
nv n~ S:nm= J ( )

~dk= sin ~ – kzdo R\n(kz)

2@ob 2@oa o

T=m==mr.nm (55b)
.>(k=). Y.(k=). Tn, nM(kz). (63)

2do 2do
Finally, we get the perturbational expression for the reso-
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nance frequency of the wraparound cavity as

(64)

For the cylindrical-rectangular patch, using (50) we obtain

()
2 ah

~=(_~)~+” ! —1%.12K?I”’L* (65)
‘r ‘nmPO

where

?“&= U+nm+ ~ Uznm (66)
a

“Jmdkzsin(%-kzdo)R~(kz)
.F(kz)”i(k,)”i,.n(k=)

co

1 ‘in(+’”)‘Lm=,;O(1+ 8,.)

sin
(

~ – kzdo

“J
m dkZkZ

)
z R;r(kz) ”~(k,)”~,.~(kz)

o

()

k:– ;

o

(67)

and

Rz,(k=) = ;-bdPRz,(p, kz)
a

[1
11 1

(68)
= ! kl,a Jr(klPa) J~(kIPa)

where we have employed the symmetrical properties of the

integrands.

Finally, we get the perturbational expression for the

resonance frequency of the cylindrical-rectangular cavity

as

Thus (64) and (69) provide a perturbational approxima-

tion of the resonance frequencies of the wraparound and

the cylindrical-rectangular cavity, respectively.

V. NUMERICAL RESULTS

The resonance in wraparound and cylindrical-rectangu-

lar microstrip patch resonators is presented using two

different approaches: Galerkin’s method (GM) and the

perturbation approach (PA).
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Fig. 2. (a) Real part of the normalized resonant frequency of a
wraparound microstrip patch: q = 2.3 co, a = ZOcm, ~0 = 4 cm, TEOI

mode,—— o — -–(GM,),--A ——(PA). (b) Imaginary part of the
normalized resonant frequency of a wraparound microstrip patch:

q = 2.3c0, a = 20 cm, do = 4 cm, TEol mode,—— o ——(GM),
——A— —(p~).

In applying Qialerkin’s method and evaluating the ma-

trix elements @P~, .n I given by (39) or (40), the path of

integration in the complex k= plane has to be defined.

Since the resonance frequencies are complex due to the

radiation loss, the branch point and pole singularities can
move below the real axis of the complex k= plane. There-

fore, the integration path is deformed below the real axis

so that it does not cross the migration path of the singular-

ities [9], [13].

Numerical results presented in this paper show the real

and imaginary parts of the resonance frequencies for the
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(b)

Fig. 3. (a) Real part of the normalized resonant frequency of a

wraparound microstrip patch: q = 2.3<0, a = 20 cm, do = 4 cm, HEIO
mode, —— o ——(GM),— —A ——(PA). (b) Imaginary part of the

normalized resonant frequency of a wraparound microstrip patch:

cl =2.36.. a = 20 cm, do = 4 cm, HEIO mode,——. __(G~,
——A— —(PA).

wraparound and cylindrical–rectangular microstrip

patches. The quality factor and the fractional bandwidth
can be directly computed using the following expressions

[14]:

Q- *’
2U,,

B.W. = L
Q

where u’ and u“ are the real part and the imaginary part

of the resonance frequency, respectively.

In Fig. 2(a) and (b), the real and imaginary parts of the

normalized resonance frequency of the TEOI mode for the

wraparound resonator are displayed as a function of h /dO.

The normalization is with respect to Q, of the magnetic-wall
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t i

;:~
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(b)

Fig. 4. (a) Real part of the normalized resonant frequency of a

wraparound microstrrp patch: c1 = 2.360, a = 20 cm, do = 4 cm, HEII

mode,—— o ——(GM),— —A ——(PA). (b) Imaginary part of the
normalized resonant frequency of a wraparound microstnp patch:
c1 = 2.36., a = 20 cm, do = 4 cm, HEII mode,—— o ——(GM),
——A— —(PA).

cavity. In the calculation using Galerkin’s method, the

basis functions with n = – 1, 0, 1 and m = 0,1,2 are em-

ployed. Basis functions without edge condition have been

used, and the computed results for the resonance fre-

quency are found to differ by at most 0.3 percent. The

results using the perturbation approach and Galerkin’s

method are shown to be asymptotic to each other for a

thin dielectric layer.

Fig. 3(a) and (b) shows the real and imaginary parts of

the complex resonance frequencies of the HEIO mode for

the wraparound resonator for a substrate with a dielectric

constant of 2.3. Fig. 4(a) and (b) shows the real and

imaginary parts of the complex resonance frequencies of
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Fig. 5, (a) Rea3 part of the normalized resonant frequency of a cylindn-

cal-rectangular microstrip patch: c1 = 2.3(0, a = 20 cm, do = 4 cm,

$JO = 24°, H% mode,:– o ––(GM),–—A––(PA). (b) Imagi-

nw part of the normahed resonant frequency of a cylindrical-rect-
angular microstrip patch: c1 = 2.3(0, a = 20 cm, do = 4 cm,

$10 = 24°, H%, mode,–– o —–(GIvQ,-–A--(PA).

the HEII mode for the wraparound resonator for a sub-

strate with a dielectric constant of 2.3.

For the cylindrical-rectangular resonators, basis func-

tions with m = 0,1,2 and n = 0,1,2 are employed in

Galerkin’s method. Eleven terms for the summation over r

in (40), (66), and (67) are found to be sufficient to obtain

convergent results.

Fig. 5(a) and (b) shows the resonance frequencies of the

HEOI mode of the cylindrical rectangular microstrip res-

onator using a dielectric constant of 2.3. It is also found

that the results using basis functions without edge singular-

ity differ from that with edge singularity y by at most 0.5

percent.
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In Fig. 6, a comparison of the imaginary parts of the

resonance frequency for three different modes of the

wraparound patch is displayed. Results indicate that the

TEOI mode and the HEII mode are the efficient radiating

modes, having about the same radiating loss, and that the

HEIO mode is more appropriate for resonator applications.
In Fig. 7, a comparison of tlhe imaginary parts of the

resonance frequency for three different modes of the cylin-

drical-rectangular patch is displayed. Results indicate that

the HEOI mode is the most efficient radiating mode among

these three modes, and that the HEIO mode is more

appropriate for resonator applications. The radiation loss

of the HEIO mode of the cylindrical–rectangular patch is
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larger than that of the HE ~0 mode of the wraparound

patch.

VI. CONCLUSIONS

A rigorous analysis of theresonance frequency problem

of both the cylindricd–rectangular and the wraparound

microstrip structure is presented using two different meth-

ods: an integral equation formulation and a perturbation

approach. Using Galerkin’s method in solving the integral

equations, the complex resonance frequencies are studied

with sinusoidal basis functions. The edge singularity of the

patch current is shown to have no significant effect on the

accuracy of the results. Furthermore, it is shown that the

HEIO modes of the cylindrical–rectangular and

wraparound patches are more appropriate for resonator

applications. The HEOI and TEOI modes of the cylindri-

cal–rectangular and wraparound patches, respectively, are

efficient radiating modes.
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